
DEFENSE TECHNICAL INFORMATION CENTER 

Fn/ormjUUitforike Def&tst CoMttuouty 

Month Day Year 

DTIC^has determined on WI / 1 LL-L^LL   JJ^   & ^ that this Technical Document 
has the Distribution Statement checked below.  The current distribution for this 
document can be found in the DTIC® Technical Report Database. 

0 DISTRIBUTION STATEMENT A. Approved for public release; distribution is 
unlimited. 

] © COPYRIGHTED. U.S. Government or Federal Rights License. All other rights 
and uses except those permitted by copyright law are reserved by the copyright owner. 

• DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government 
agencies only. Other requests for this document shall be referred to controlling office. 

] DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government 
Agencies and their contractors. Other requests for this document shall be referred to 
controlling office. 

] DISTRIBUTION STATEMENT D. Distribution authorized to the Department of 
Defense and U.S. DoD contractors only. Other requests shall be referred to controlling 
office. 

• DISTRIBUTION STATEMENT E. Distribution authorized to DoD Components only. 
Other requests shall be referred to controlling office. 

] DISTRIBUTION STATEMENT F. Further dissemination only as directed by 
controlling office or higher DoD authority. 

Distribution Statement F is also used when a document does not contain a distribution 
statement and no distribution statement can be determined. 

] DISTRIBUTION STATEMENT X. Distribution authorized to U.S. Government 
Agencies and private individuals or enterprises eligible to obtain export-controlled 
technical data in accordance with DoDD 5230.25. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments 
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington 
Headquarters Service, Directorate for Information Operations and Reports, Paperwork Reduction Project (0704-0188) Washington DC 20503 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
24-07-2008 

2. REPORT TYPE 
AFOSR Final Report 

3. DATES COVERED: (From - To) 
04/01/07 ~ 06/30/08 

4. TITLE AND SUBTITLE 

Model Justified Search Algorithms for Scheduling Under Uncertainty 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 
FA9550-07-1-0403 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 

Adele Howe 
L. Darrell Whitley 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Colorado State University 
Fort Collins, CO 80523 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Office of Scientific Research 
Optimization and Discrete Mathematics 
Donald Hoarns, Program Manager 

10. SPONSOR/MONITOR'S ACRONYM(S) 
AFOSR 

AGENCY REPORT NUMBER 

12. DISTRIBUTION AVAILABILITY STATEMENT 
AFRL-SR-AR-TR-08-0527 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
We have identified clear trade-offs in algorithm design for the scheduling under uncertainty problem that relate to the sources of the uncertainty. 
We also indentified plateaus as a significant barrier to superb performance of local search on scheduling and have studied several canonical 
discrete optimization problems to discover and model the nature of plateaus. From this, we have developed lower and upper bound predictive 
models of plateau size in a significant optimization problem: MAXSAT. We also develop new theoretical results on the nature of plateaus in 
Elementary Landscapes. 

15. SUBJECT TERMS 
Optimization, Scheduling, Elementary Landscapes 

16. SECURITY CLASSIFICATION OF: 

a. REPORT b. ABSTRACT C. THIS 
PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 

20b. TELEPHONE NUMBER (include area code) 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI-Std Z39-18 



Final Report for AFOSR #FA9550-07-1-0403 
Model Justified Search Algorithms for Scheduling Under 

Uncertainty 
April 1, 2007 to June 30, 2008 

Adele Howe       L. Darrell Whitley 
Computer Science Department 

Colorado State University 
Fort Collins, CO 80524 

email: {howe,whitley}@cs.colostate.edu 

July 25, 2008 

Abstract 

Most search algorithms do not explicitly and dynamically exploit problem structure. In fact, 
most search algorithms throw away all or most of the information that has been collected 
about the search space. Some algorithms maintain limited persistent state information, but 
none of these methods explicitly model and exploit problem structure. This means that 
most of what could be learned about a search space is never exploited. 

As part of our long-term research, we have pioneered development of models of the dynamics 
of scheduling search spaces and used those models to justify the design of new simple 
search algorithms. In this project, we have focused on thoroughly analyzing an Air Force 
application of scheduling under uncertainty and have developed new models of a critical 
feature of discrete optimization search spaces: plateaus. We have identified clear trade-offs 
in algorithm design for the scheduling under uncertainty problem that relate to the sources of 
the uncertainty. We also identified plateaus as a significant barrier to superb performance of 
local search on scheduling and have studied several canonical discrete optimization problems 
to discover and model the nature of plateaus. Prom this, we have developed lower and upper 
bound predictive models of plateau size in a significant optimization problem: MAXSAT. 
We also develop new theoretical results on the nature of plateaus in Elementary Landscapes. 
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1 Project Objectives 

Our long term research goal is to develop the theoretical and empirical underpinnings of a 
science of automated scheduling. We had two primary objectives for this research project: 

1. Analyzing an Air Force relevant application of scheduling under uncertainty and con- 
structing new algorithms that address its sources of uncertainty as well as its novel chal- 
lenges and constraints. 

2. Developing new predictive and explanatory models of search spaces. 

To achieve the first objective, we studied an Air Force application: scheduling tracking 
tasks on the Eglin AFB phased array radar system that is part of the USAF SpaccTrack 
system. The application imposes significant resource constraints, is over-subscribed, has both 
a short term and long term objective, and has uncertainty arising from possible task failure. 
The application supported grounding our research in practical issues and pushed the envelope 
of research because few studies have examined uncertainty due to task failure. We constructed 
a problem generator and used it to drive studies into trade-offs inherent in the application. Our 
new algorithms addressed these trade-offs as well as considering the impact of available time 
on decision making. 

To achieve the second objective, we studied several well known canonical problems: flow 
shop scheduling, planning and maximum satisfiability. The canonical problems expedited ex- 
perimental control and development of new theory underlying search. They also supported 
generalization of research results. We looked at three issues. First, could the theory of el- 
ementary landscapes be extended and exploited? Second, because our objects of study arc 
discrete optimization problems, could we model an attribute common to such problems as well 
as problematic for local search: plateaus? Third, could performance of particular complex 
search algorithms be predicted from problem features? Our studies identified key features of 
the problems and characterized them empirically and where possible analytically. 

2 Accomplishments/New Findings 

This section organizes the major results of our project into two categories: scheduling under 
uncertainty and modeling search spaces. The first summarizes our results with the SpaceTrack 
scheduling under uncertainty problem. The second covers the experiments and theory developed 
from our analyzes of well known canonical problems. 

2.1     Scheduling Under Uncertainty 

Real world scheduling applications often must be solved with incomplete or uncertain in- 
formation. We study a real world scheduling application in which orbit tracking tasks must 
be assigned execution times on a phased array radar at Eglin Air Force Base in Florida, USA. 
Tracking tasks may fail when they are executed due to uncertainty inherent in the orbital 
dynamics of tractable entities. The objective then is to maximize a priority weighted sum of 
tasks that execute successfully. Since the success of a task is not known at schedule generation 



time, wc derive an expectation value that models the task's a priori expected contribution to 
the weighted sum. An object's radar cross section along with its position with respect to the 
radar's boresight influence detectability. Therefore, the expectation value changes dynamically 
in time as an object moves through space. Therefore, an individual task's expectation depends 
directly on the time at which it is scheduled to execute. 

We classify scheduling methods for our application into two approaches. In an on-peak 
approach, tasks arc assigned the time that maximizes the expectation value during a particular 
object's pass. In a relaxed approach, tasks can be scheduled at any time an object is tractable. 
Current algorithms for scheduling tracking missions employ an "on-peak" approach. That is, 
objects arc only tracked during the time that produces the optimal probability of success. If 
the available resource has infinite capacity, on-peak produces the optimal solution. 

However, when the resource is sufficiently over-constrained, we prove that the problem 
becomes NP-hard. In particular, on-pcak scheduling can be characterized as an integer pro- 
gramming problem in which all of the selected tasks can be feasibly scheduled on their peaks. 
This is an instance of the NP-hard {0,1} multidimensional knapsack problem [6]. It contains the 
traditional (single-dimensional) {0,1} knapsack problem as a special case when the constraint 
matrix is 1 x n. We showed NP-hardness of on-pcak scheduling by a reduction from single- 
dimensional knapsack. Relaxed scheduling is NP-hard since it contains on-pcak scheduling as 
a special case. 

The problem constraints also precipitate an interesting interaction. Earlier work [16] sug- 
gested that the on-peak approach is relatively inflexible and results in more resource contention 
than the relaxed approach. By allowing tracking tasks to occur during times that give po- 
tentially suboptimal expectation values, wc can empirically increase the overall utilization of 
the schedule. We hypothesize that this expectation/utilization trade-off could be exploited by 
heuristic search algorithms to produce mission schedules that have a higher global expectation 
value than the optimal on-pcak schedule. In such a solution, a subset of individual tasks would 
have a reduced individual probability of success, but could result in a higher total successful 
yield at execution time. In general, this cannot always occur; the result depends mainly on the 
degree of contention and expectation value functions specific to the domain. Thus identifying 
this property reveals a certain exploitable structure inherent in the problem. 

2.1.1     Algorithms for Spacetrack 

The intractability of the SpaccTrack domain favors the application of incomplete algorithms. 
Local search has been effectively applied to NP-hard scheduling problems in which there is an 
implicit underlying structure that can be exploited by applying a sequence of moves [19,12,18,1]. 
Our two algorithms are variants of local search that differ in solution construction behavior. 

On-peak Local Search finds a subset of on-peak tasks that maximize the evaluation func- 
tion: sum of the probabilities of success for scheduled tasks estimated from models of the tasks 
over time. The local search starts with an initial permutation and iteratively applies the swap 
move operator. The 0(n2) size of the neighborhood induced by the swap move operator becomes 
unmanageable for local search in large realistic instances; wc use a randomized neighborhood. 
The permutation is passed to a deterministic schedule builder [21,17,3,11,9,2] which attempts 



to schedule each task in the permutation on its peak time slot. If a task cannot be feasibly 
inserted into the schedule, it is discarded, and the next element in the permutation (io(i + 1)) 
is considered. 

Two-phase Local Search further adapts the use a schedule builder to make decisions about 
1) which task should be placed in the schedule next and 2) rather than placing the task "on- 
peak" a secondary search is done to place the task so as to minimize conflicts with other tasks 
and to maximize the overall yield. To do this, two-phase local search (TP-LS) focuses on two 
aspects of a candidate solution: an insertion ordering for the schedule builder, and an insertion 
policy for each task. The search algorithm is named for its two phase operation. In the ordering 
phase, the algorithm searches the space of schedule builder insertion ordering permutations, in 
the same way as does the on-peak local search defined above. In the policy phase, the algorithm 
searches for an insertion policy for each task in the schedule builder. The algorithm strategically 
switches between using search to decide what task to place next, and using search to decide 
how best to place each task. 

When the algorithm is operating in phase 1, it behaves much like OP-LS above, employing 
stochastic hillclimbing on the insertion ordering on the space induced by the swap operator 
(although using the policy for the evaluation). When the algorithm switches to phase 2, it 
enters a policy mutation mode in which stochastic hillclimbing is imposed on the placement on 
the current task being considered for placement in the schedule. 

2.1.2     Assessing the Trade-offs 

To assess the trade-off and test whether our hypotheses hold in practice, we designed a 
factorial experiment in which we compare the algorithms on different problem sets and re- 
source capacity constraints. We assess performance or SpaccTrack schedules according to an 
evaluation function (the Expected Weighted Sum Successful, denoted E[W55], which measures 
the expected "yield" of successful tracks) as well as an objective function which calculates the 
actual number of successful tasks derived through simulation. 

A schedule day for a SpaccTrack radar consists of thousands of objects. We created two 
problem sets on which to test our hypotheses: an experimental control set and an application 
consistent set. 

The experimental control set provides a collection of small tractable instances on which 
it is possible to obtain an exact solution to the on-peak schedule in order to make the fairest 
possible assessment of potential. This set consists of 50 problems of 50 requests each. 

We applied to the experimental control set a mixed-integer programming solver (lp.solve, 
which was originally written by Michel Berkclaar at Eindovcn University of Technology) that 
uses LP-relaxation and branch-and-bound. This solver was able to find the on-peak optimal 
solution for each problem in the experimental control set. This solver could not be applied 
to the "relaxed" problem which allowed for scheduling off-peak. For the relaxed problem we 
used the two-phase local search. This set up an interesting question: which approach is better, 
1) using an optimal LP solver on the on-peak problem, or 2) using a heuristic method on the 
"relaxed" problem when optimal solutions cannot be guaranteed? 



Wc found that two-phase search always obtains a mean value higher yield (with the exception 
of ecl7) than the optimal on-pcak solution found by the LP solver. On average, the mean two 
phase local search (TP-LS) solutions were 3.6% above OP-OPT (the on-pcak optimal solution 
found by branch-and-bound). Given the small standard deviations observed, the OP-OPT 
solutions were on average 2.7 standard deviations below the TP-LS mean. 

The application consistent set is made up of a set of highly-realistic test problems modeled 
on real data. Wc obtained actual data on approximately half of the objects in space that arc 
tracked by SpaceTrack. Our test problems were created using orbital information from NORAD 
(http://www.space-track.org). We generated twelve different problem instances with data 
from two days in April 2006. The application consistent set is much larger and more realistic 
and thus cannot be solved by the MIP solver. 

The application consistent set is embedded in a simulator. At each scheduling period, wc 
ran each algorithm for 50000 evaluations. The best schedules found by each algorithm were 
then executed on the simulator which attempts to execute each tracking task; whether or not 
the task succeeds is proportional to its estimated probability of success. 

To simulate auxiliary surveillance and calibration tasks during the course of the schedule 
day, wc computed a set of disjoint intervals such that each interval had a minimum duration of 
10 minutes and a maximum of 45 minutes. The actual durations were computed randomly at 
problem generation time. Each problem instance has about 30 such intervals. 

Wc compared performance of the two phase algorithm to the on-pcak algorithm for the 
application consistent set. To see how each algorithm performs in each scheduling period for 
a representative instance, we display the (normalized) expected weighted sum successful found 
by each algorithm for instance AC5000a in Figure 1. In each scheduling period, TP-LS performs 
superior to OP-LS, suggesting that the trend found in the experimental control set translates 
to the application consistent set. 

The improvement produced by the two-phase algorithm was analogous across all instances. 
In order to summarize the effect, we report the normalized expected weighted sum successful 
obtained by each algorithm for each problem aggregated over all scheduling periods in Figure 1. 
Note that the overlap in ranges results from the individual variance across scheduling periods. 
The gain in E[WSS] of TP-LS over OP-LS averaged over all sets and scheduling periods for 
the application consistent set was 30.68% with a standard deviation of 16.06%. 

The previous results were computed using the evaluation function which yield an overall 
expected yield, but docs not indicate if a particular task successes or fails. Wc also looked 
at performance on the simulated objective function; this this case, each individual task cither 
successes or fails. Wc performed one-sided Wilcoxon signed rank tests to sec whether TP-LS 
outperforms OP-LS with statistical significance. We compared the mean weighted sum success- 
ful values (WSS) and found that TP-LS, using the relaxed scheduling approach, consistently 
obtained a statistically higher mean weighted sum successful and yield across all instances at 
the 99.99% confidence level (p < 0.00001). 

We hypothesized that relaxed insertion offers an advantage when there exists a significant 
amount of resource contention. As capacity decreases, contention will increase. Figure 2 demon- 
strates the change in the mean percentage of optimal on-pcak solution by TP-LS and OP-LS 
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Figure 1: [Left] Normalized £[^55] (Expected Weighted Sum Successful) of schedules found 
by each algorithm in each reschedule period for problem instance AC5000a. [Right] Box and 
whisker plot of normalized E[H^55] of schedules found by each algorithm on each instance in 
the application consistent set. 

with respect to this capacity adjustment over all problems in the experimental control set. 
Note that as the problems become more capacity constrained, the advantage over the on-pcak 
solution exhibited by TP-LS grows significantly. 

2.2    Modeling Search 

Wc examined three issues related to modeling search spaces towards the goal of designing 
search algorithms. First, could the theory of elementary landscapes be extended and exploited? 
Second, because our objects of study are discrete optimization problems, could wc model an 
attribute common to such problems, specifically plateaus, which is also known to be problematic 
for local search? Third, could performance of particular complex search algorithms be predicted 
from problem features? Our studies identified key features of the problems and characterized 
them empirically and where possible analytically. 

2.2.1     Elementary Landscapes 

A combinatorial landscape is a formalism that allows us to carefully analyze certain heuristic 
search algorithms that solve discrete optimization problems. A combinatorial landscape is 
defined by a tuple (X, N, f) where X is the set of candidate solutions, N is the neighborhood 
operator and / is the objective function that measures the cost or value of each solution. The 
structure (AT, N, f) can thus be characterized as a vertex-weighted graph in which the vertices 
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Figure 2: Mean improvement ratio over all capacity controlled problems with respect to capacity 
adjustment. Capacity decreases from left to right. 

arc the candidate solutions X weighted by / and connected by the neighborhood operator. A 
search algorithm can be seen as performing a walk on this graph. Thus analyzing the structure 
of this graph provides insight into the characteristics of a problem instance described by / and 
how it might affect different search algorithms. 

An elementary landscape is a specialization of a landscape that obeys a difference equation. 
In particular, suppose a(x) gives the average objective function value over all the solutions in 
the neighborhood N(x). Then a landscape is elementary if and only if the following equation 
holds. 

o(*) = /(*) +£(/-/(*)) (1) 
where k is constant over the entire landscape, / is the average objective function value over X, 
and d = |iV(x)| is the cardinality of the neighborhood (i.e., the degree of the landscape graph). 

Equation (1) is important because it induces certain topological constraints on the search 
space which may ultimately affect how a search algorithm behaves. For example, Codenotti 
and Margara [4] proved that if Equation (1) holds, for any arbitrary x for which f(x) / /, the 
entire neighborhood cannot consist entirely of solutions with evaluations equal to /. In other 
words, there are certain types of plateaus (connected sets of solutions with equal evaluation) 
that cannot exist on elementary landscapes. 

In our research, we have extended this work by discovering two further topological con- 
straints on elementary landscapes. We have also generated new results on MAXSAT modeled 
as a combination of elementary landscapes. 



Result 1: On an elementary landscape, if a solution on a plateau X\ has only equal and 
disimproving neighbors, then there cannot exist a solution xi with only equal and improving 
neighbors on the same plateau. Note that f{x\) — /(X2) but a(x\) / a(x2) which contradicts 
Equation (1) holding for the entire landscape. This also follows directly from a result by Grovcr 
[7] which states all local minima lie below the mean landscape evaluation / and all local maxima 
lie above the mean. The implication of this result is that certain forms of plateaus cannot exist 
on elementary landscapes. For instance, if an algorithm encounters a solution on a plateau 
with no disimproving moves, we instantly know that every single solution on the plateau has 
an "exit": that is, improving moves to solutions off the plateau. This result holds as long as the 
landscape is elementary and is not completely flat (i.e., all solutions have the same evaluation) 
regardless of the size of the plateau. 

Result 2: Suppose x\ and xi arc two locally minimal solutions on the same plateau. Without 
loss of generality, we suppose the number of equal neighbors of x\ is greater than or equal to 
the number of equal neighbors of x-i- Then, assuming minimization, the sum of all disimproving 
moves in the neighborhood of x-i must be greater than or equal to the sum of all disimproving 
moves in the neighborhood of x\. This follows in a fairly straightforward manner from Equation 
(1). An analogous result holds for all local maxima on plateaus. 

We have also investigated the implications of Equation (1) for search algorithms. Clearly, 
on elementary landscapes, the average value of the neighborhood a(x) can be computed without 
actually evaluating any of the neighbors of x. Thus a local search algorithm can assess how 
promising a solution's neighborhood may be (in terms of expectation) before enumerating the 
neighborhood. Furthermore, if an algorithm has partially expanded a neighborhood, we can 
immediately compute the average value of the neighbors that have not yet been explored. A 
perhaps surprising result is that if the average value of a partial neighborhood Pi C N(x) of x is 
worse than the average value of a partial neighborhood P2, the average value of the remaining 
neighbors in Pi is guaranteed to be better. 

Result 3: Any arbitrary combinatorial landscape can be represented as a linear combina- 
tion of elementary landscapes. In the worst case, an exponential number of such elementary 
components arc needed (e.g., for a completely random search space). However, it is often the 
case that many non-clerricntary landscapes can be represented as a superposition of a relatively 
small number of elementary components. We have recently proven that MAX-fc-SAT can be 
represented by at most k elementary landscapes. This means the classic MAX-3SAT (often just 
called MAXSAT) is a composition of only 3 elementary landscapes. We also have conjectured 
that many other applications that are relatively simple to characterize but difficult to solve are 
also the combination of a small number of elementary landscapes. 

The impact of our research is twofold. In the first place, the guaranteed relationships and 
forbidden structures in the search space can serve to better inform heuristic search algorithms 
on how to respond to different problems. This is due to the fact that on an elementary land- 
scape, an algorithm can infer the existence of certain topological relationships without spending 
computational resources expanding the neighborhood. Second, these analyzes may translate to 
non-elementary domains by observing how relationships and properties in elementary compo- 



nents influence the relationships and properties of their superposition. In this case, we expect 
results about elementary landscapes will indirectly generalize to a large class of important 
combinatorial optimization problem. 

2.2.2    Plateaus 

Local search algorithms have been successfully applied to a broad range of problems, in- 
cluding many of the scheduling problems we have studied. In earlier research, we identified 
plateaus as a dominant feature in the AFSCN scheduling problem; evidence from our studies 
and others indicate the same is true in other applications as well. 

The two characteristics that determine the hardness of escaping a plateau are its exit density: 
the number of strictly improving moves incident to plateau solutions, and its size: the number 
of solutions belonging to the plateau. Since the progress of a local search algorithm is ultimately 
connected to how well it can escape plateaus, plateau characteristics arc intimately related to 
problem difficulty for local search. 

To further understanding of how plateaus influence local search, we developed methods for 
estimating upper and lower bounds on the expected plateau size for a well defined class of 
optimization problems: maximum satisfiability (MAXSAT). Such bounds can benefit search 
algorithms in two ways: first by providing an estimate of how hard a problem instance is likely 
to be for local search, and second by predicting when the expected size of a plateau is likely to 
be too large to systematically search. 

Under some simplifying assumptions on the distribution of equal valued solutions in the 
search space, we construct a correspondence between plateaus in MAXSAT problems and per- 
colation clusters in hypercube graphs. A local search algorithm defines some computationally 
tractable neighborhood function N : X i—> 2X and, starting from an independently generated 
initial candidate solution, walks along the graph induced by the neighborhood function. Thus, 
the behavior of local search can be characterized as a biased walk on the neighborhood graph 
G(X,E) induced by N, that is, (x,y) € E <*=» y G N(x). For MAXSAT problems, G{X,E) 
is isomorphic to a hypercube graph of order n. 

A plateau is simply a connected component of the subgraph of the neighborhood graph G 
induced by a level set. A level set is the maximal set of solutions that have the same value of 
the objective function. 

Lower Bound To derive a lower bound on plateau size, we estimate the size of all neutral 
paths from an arbitrary point on the plateau. A neutral path is defined as a path through the 
graph in which all points belong to the same level and that the Hamming distance from the 
start point is monotonically increasing by unit length at each step in the path. Starting from 
this, wc derived the expected size of the Hamming path set (and therefore our lower bound on 
plateau size) as 

E[l#rl] = £("W) (2) 
r=0   >    ' 

Wc develop an estimate of hx(r) (and so E[|i/X|]) using a percolation approach. Let Cn 

be a hypercube graph of order n.   Each vertex in Cn corresponds to a string {0,1}".   Let 
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x = (000... 0) and y — (111... 1). We refer to x and y as the corner vertices. A vertex is 
active if it belongs to the same level set as x. We define the concentration as the probability 
p that a vertex is on the same level set as x, and thus active. Wc assume this probability is 
constant and independent across all vertices. Note that a; is a fixed active vertex since it trivially 
belongs to its own level set. Wc say the cube percolates from y to x if there is a monotonic path 
(y — x\, X2, • • •, Xk — x) such that all X{ are active. 

Let c(n,p) denote the probability that Cn percolates with concentration p from y to the 
fixed active vertex x. With further analysis, 

E[|i/z|] > £ ("W,p) (3) 

Upper Bound Wc have characterized plateaus as connected clusters of active sites in the 
hypcrcubc graph. In this section we will use an exact result from percolation theory to derive 
an upper limit on the expectation of plateau size for certain values of p. 

The Bcthc lattice (or Cayley tree) of coordination number n is defined as a connected acyclic 
graph in which each vertex is connected to n neighboring vertices. For a given concentration p, 
the expected size of connected clusters of active sites in the Bethc lattice will always be greater 
than or equal to the expected size of clusters of active sites in the hypercube graph. 

The expected cluster size on the Bcthe lattice has an exact solution. Let b be an arbitrary 
active site; the expected cluster size at arbitrary b is: 

1+p 
(n - l)p (•1) 

Estimating the Concentration If wc know p for a particular level set, then we can bound 
the expected plateau size. We developed a method that uses a neutral walk: a polynomial 
time algorithm that locally samples around a solution. To estimate p for a level set L, wc 
compute the empirical mean neutral walk length £M by performing a number of neutral walks 
from sampled points on L. 

Model Validation Wc have proved that, given our assumptions, our models provide upper 
and lower bounds. Wc also empirically assessed how good were these models. To test the size 
prediction bounds given known concentrations, wc evaluate predictions for random hypcrcubc 
landscapes on which wc explicitly control concentration. Wc report our prediction data in 
the form of correlation plots. There are three types of data points. "Plateau/HP" is actual 
plateau size vs. Hamming path prediction. "HP/HP" denotes actual Hamming path set size vs. 
Hamming path prediction. "Platcau/Bcthc" denotes actual plateau size vs. Bcthc prediction. A 
perfect prediction would lie on the diagonal line included in the plots. Data for a 20 dimensional 
random landscape are plotted in Figure 3. As plateau size increases, we see first increasing and 
then decreasing inaccuracy for the lower bounds. This is due to our ignoring certain types of 
paths in our model, which is the subject of future work. 

To determine the accuracy of our concentration estimate, we run the above experiments 
again and estimate p using the neutral walk method. We find a tight correlation between the 
predicted and actual concentrations. 

11 



ptateaifHP 
ptateaiKBelh« 
HP/HP ^ 

l)1„u..«-»"a'U 

./ 

/ 

s 
100 tooo 

prttdicteri 

Figure 3: Double log plot of predictions on 20 dimensional random landscape. 

To test how well the bounds transfer to actual problems, we perform experiments on ran- 
dom and structured MAXSAT problems. The estimated concentration on each problem set of a 
particular size appears to decrease as a function of evaluation, which corresponds to observa- 
tions of other researchers (e.g., [8,5,14].) Wc also sec a marked increase in variance as level 
increases which suggests plateau size becomes less uniform in better regions of the search space. 
Wc found similar trends in accuracy with size across the random and structured problems. 
Furthermore, the trend is again similar to what wc found on the hypcrcubc graph model. 

2.2.3    Learning Algorithm Models 

Our goal is to design algorithms that arc well suited to their applications. We have found 
in our studies over the years that certain search space features exert a strong influence on the 
performance of scheduling algorithms (e.g., plateaus) and that knowledge of features can direct 
the design of new algorithms (e.g., our earlier design of ALLS for scheduling of satellite com- 
munications and IJAR for job shop scheduling). In this study, we sought to determine whether 
models could be learned that predict success of different algorithms on specific problems. To- 
wards that end, wc selected planning algorithms as our focus because a large number of systems 
arc publicly available and the community has produced a large number of benchmark problems 
to support the study. 

Wc collected performance data on 27 planning systems solving almost 5000 problems. No 
planner solved all the problems. Wc also collected features of the problems that cither could 
be automatically extracted from their descriptions (e.g., different size metrics and types of 
constraints) or from partial expansions of their search spaces (e.g., some plateau metrics). Using 
off-the-shelf machine learning tools, we constructed models for each planner of the likelihood 
of success and amount of time required to solve problems based on their features. Wc found 
that we could create very accurate models of success, but not so accurate models of time. Our 
post-hoc analysis suggests that time predictions require considerably more knowledge of the 
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dynamics of the search space it interaction with the algorithms than arc encompassed by our 
current feature set. 

We also looked at extending existing models of planning search spaces to more general 
categories of problems and planners. We found that the data validate previous results that 
link search topology (specifically the incidence of benches and local optima in certain classes of 
problems) with planner performance on a wider set of problems that those studied earlier. 

These results arc promising for transfer into scheduling applications and the range of algo- 
rithms developed for them. Clearly, the key is to identify predictive features, such as plateau 
metrics, and obtain data over a wide range of instances. 

2.3    New Focused No Free Lunch Theorems 

Wc have developed new proofs [20] which show that a subset of algorithms can have identical 
performance over a subset of functions, even when the subset of functions is not closed under 
permutation. Wc refer to these as focused sets and wc refer to the proofs under the name 
Focused No Free Lunch Theorems. 

Focused No Free Lunch theorems build on the Sharpened No Free Lunch theorem of Schu- 
macher, Vosc and Whitlcy [13] which shows that No Free Lunch holds over sets that arc closed 
under permutation. The No Free Lunch theorem states that no search algorithm is better than 
another when compared over all discrete functions. The Sharpened No Free Lunch theorem 
proves that no search algorithm is better than another when compared on any finite set closed 
under permutation. 

The Sharpened No Free Lunch Theorem also proves that any two arbitrarily chosen algo- 
rithms will have identical behaviors if and only if the set of functions used in the comparisons 
arc closed under permutation. 

Unlike the Sharpened No Free Lunch theorem, Focused No Free Lunch theorems hold over 
sets that are a subset of the permutation closure. At first this seems like a contradiction. But 
the difference is both subtle and extremely important. 

Sharpened No Free Lunch hold when comparing any and all search algorithms. However, 
if one selects two specific algorithms then their behavior may be identical over a much smaller 
focused set of functions; in some cases the focused set contains only 2 functions and both can 
be proven to be compressible. 

In some cases, a closure exists which corresponds to the orbit of a permutation group. In 
this case, wc leverage mathematical concepts from permutation groups to bound the maximal 
size of the focused closure. In other cases, particularly when search is limited to m steps, there 
can be many focused sets and wc construct a focused set hcuristically. 

Ultimately, Focused No Free Lunch theorems are concerned with how researchers and prac- 
titioners use and compare search algorithms. If algorithm Al is better than algorithm A2 on 
a benchmark (3, the Sharpened No Free Lunch theorem tells us that if wc compute the permu- 
tation closure of 0 (denoted by P((3)), then algorithm A2 is equally better than Al on the set 
(P{P) - (3) in the aggregate. The problem is that usually the size of j3 is small and {P(fi) - (i) 
is enormous. Focused No Free Lunch results show that there can exists a focused set denoted 
by C(0) such that when Al is better than A2 on j3, then A2 is better than Al on (C(/3) - /3), 
where C{(3) can be quite small. 
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These results also address the concerns raised by Igcl and Toussaint [10] and Strcctcr [15] 
who show many broad classes of problems (for example, consider ONEMAX, MAXSAT, trap 
functions, or N-K Landscapes) are not closed under permutation. They argue that No Free 
Lunch docs not apply in such domains, which restricts the value of this theory. Focused No 
Free Lunch theorems however, can apply in these domains. 

These theoretical results have deep implications for how we test and compare search algo- 
rithms. 
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3    Executive Summary 

3.1     Personnel 

During the grant period, the following personnel were supported at the indicated level: 
Pis: 

Adcle Howe 1.5 months 
L. Darrcll Whitlcy 1.0 months 

Research Assistants: 
Mark Roberts 4.5 full-time months (9 half-time) 
Andrew Sutton 9.75 full-time months (10.5 half-time, 4.5 full-time) 

3.2    Publications 

Journals 

• A.M. Sutton, A.E. Howe and L.D. Whitley. "Exploiting Expectation Trade-Off in Prob- 
abilistic Modeling with Stochastic Local Search", submitted to Special Issue of Journal 
of Scheduling. 

• M. Roberts and A.E. Howe. "Learning from Planner Performance," accepted to Artificial 
Intelligence. 

Book Chapters 

• D. Whitlcy, A. Sutton, A. Howe and L. Barbulcscu. "Resource Scheduling with Per- 
mutation Based Representations: Three Applications." In Evolutionary Computation in 
Practice, T. Yu and L. Davis, Eds., Springer Berlin, pp. 219-243, 2008. 

Conferences and Workshops 

• A. Sutton, A.E. Howe and L.D. Whitley. "Using Adaptive Priority Weighting to Direct 
Search in Probabilistic Scheduling", in Proc. of International Conference on Automated 
Planning and Scheduling 2007, Providence, RI. 

• L.D. Whitlcy, A.M. Sutton and A.E. Howe. "Understanding Elementary Landscapes", in 
Proc. of the Genetic and Evolutionary Computation Conference (GECCO-08), Atlanta, 
GA, July 2008. 

• D. Whitlcy and J.R. Rowc. "Focused No Free Lunch Theorems", in Proc. of the Genetic 
and Evolutionary Computation Conference (GECCO-08), Atlanta, GA, July 2008. 

• M. Roberts, A.E. Howe, M. desjardins and B. Wilson, "What Makes Planners Pre- 
dictable?", to appear in Proc. of the International Conference on Artificial Intelligence 
planning and Scheduling Systems, Sydney, Australia, September 2008. 

• M. Lunacck, L.D. Whitley and A. Sutton. "The Impact of Global Structure on Search", 
Proc. of the 10th International Conference on Parallel Problem Solving from Nature. 
Dortmund, Germany 2008 
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• R. Dcwri, D. Whitley, I. Ray and I. Ray. "Optimizing Real-Time Ordcrcd-Data Broad- 
casts in Pervasive Environments Using Evolution Strategy", Proc. of the 10th Interna- 
tional Conference on Parallel Problem Solving from Nature. Dortmund, Germany 2008 

• R. Dewri, I. Ray, I. Ray and D. Whitley. "Security Provisioning in Pervasive Environments 
Using Multi-objective Optimization", to appear in European Symposium on Research in 
Computing and Security, Malaya, Spain, 2008 

3.3 Interactions/Transitions 

3.3.1     Presentations at Meetings 

A. Sutton Oral presentation of "Differential Evolution and Non-separability: Using selective 
pressure to focus search", GECCO 2007, London, England, July 11, 2007 ;Oral presenta- 
tion of "Using Adaptive Priority Weighting to Direct Search in Probabilistic Scheduling", 
at International Conference on Automated Planning and Scheduling, September 24 2007, 
Providence, RI; oral presentation of "Analysis of Search Landscape Neutrality in Schedul- 
ing Problems" at ICAPS 2007 Doctoral Consortium, Providence, RI, September 22 2007; 
oral presentation of "Understanding Elementary Landscapes" at GECCO 2008, Atlanta, 
GA, July 15 2008. 

A. Howe and L.D. Whitley "Model Justified Search Algorithms for Scheduling Under Un- 
certainty: Progress Report" talk at annual AFOSR PI meeting, April 2008 in Arlington, 
VA. 

A. Howe oral presentation entitled "Learned Models of Performance for Many Planners" at 
ICAPS2007 Workshop on Artificial Intelligence Planning and Learning, Providence, RI, 
September 2007. 

L.D. Whitley invited tutorial entitled "No Free Lunch for Search" and oral presentation of 
the paper "Focused No Free Lunch Theorems" at GECCO 2008, Atlanta, GA, July 12 
2008; invited tutorial, GECCO conference, London, July 11, 2007; invited speaker, "Re- 
lating Theory and Experiments", Dagstuhl 2008, Theory of Evolutionary Computation 
Workshop. 

3.4 Honors/Awards/Significant Service 

A. Howe Program Co-Chair for Twenty-Second Conference on Artificial Intelligence (AAAI 
2007), Associate Editor for Journal of Artificial Intelligence Research 

L.D. Whitley Chair of the Governing Board for ACM Sigcvo. Member of the ACM Sig Gov- 
erning Board. Co-Chair of a workshop for new CS department heads at the Computing 
Research Association "Snowbird" conference. Associate Editor for Theoretical Computer 
Science, and Evolutionary Computation. Editorial Board, Journal of Heuristics. Co-chair 
and Co-editor of Foundations of Genetic Algorithms, 2007. 
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3.5    Web Site 

Our project web site is available at http://www.cs.colostate.edu/sched/.   From that 
site, you can access publications and data from the project. 
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